手机浏览器扫描二维码访问
2.3检索增强生成技术
RAG(Retrieval-AugmentedGeion)技术是一种结合了信息检索(Retrieval)和文本生
成(Geion)的自然语言处理(NLP)方法。核心思想是将传统的检索技术与现代的自然语言
生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来
辅助大型语言模型(如GPT系列)生成更准确、可靠的回答。
在RAG技术中,整个过程主要分为三个步骤如图2.2所示:索引(Indexing)、检索
(Retrieval)和生成(Geion)。首先,索引步骤是将大量的文档或数据集合进行预处理,将
其分割成较小的块(k)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结
构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它
根据输入的查询或问题,从向量数据库中检索出与查询最相关的前k个k。这一步依赖于高效
的语义相似度计算方法,以确保检索到的k与查询具有高度的相关性。最后是生成步骤,它将
原始查询和检索到的k一起输入到预训练的Transformer模型(如GPT或BERT)中,生成最
终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯
且相关的文本。
RAG的概念和初步实现是由DouweKiela、PatrickLewis和EthanPerez等人在2020年首次
提出的。他们在论文《Retrieval-augmentedgeionforknowledge-intensivenlptasks》
中详细介绍了RAG的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将RAG技术应用到搜
索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG技术可以帮助医生快速检
索医学知识,生成准确的诊断建议和治疗方案。
2.4文本相似度计算
文本相似度计算是自然语言处理(NLP)领域的一个重要研究方向,它旨在衡量两个或多个文
本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本
之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越
小,它们之间的相似度就越高。
文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要
关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方
法有余弦相似度、Jaccard相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义
和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法
(如Word2Vec、GloVe等)和基于主题模型的方法(如LDA、PLSA等)。最后是基于机器学习的方
法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于
机器学习的方法有支持向量机(SVM)、神经网络等。
目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究
者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实
现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中
阴错阳差中,仕途无望的宋立海认识了神秘女子,从此一步步走上了权力巅峰...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
要想从政呢,就要步步高,一步跟不上,步步跟不上,要有关键的人在关键的时刻替你说上关键的话,否则,这仕途也就猴拉稀了...
他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
周胜利大学毕业后,因接收单位人事处长的一次失误延误了时机,被分配到偏远乡镇农技站。他立志做一名助力农民群众致富的农业技术人员,却因为一系列的变故误打误撞进入了仕途,调岗离任,明升暗降,一路沉浮,直至权力巅峰...